10. What to do Instead to Avoid Heart Disease

If statins don't work in the long run, then what can you do to protect your heart from atherosclerosis? My personal opinion is that you need to focus on natural ways to reduce the number of small dense LDL particles, which feed the plaque, and alternative ways to supply the product that the plaque produces (more about that in a moment). Obviously, you need to cut way back on fructose intake, and this means mainly eating whole foods instead of processed foods. With less fructose, the liver won't have to produce as many LDL particles from the supply side. From the demand side, you can reduce your body's dependency on both glucose and fat as fuel by simply eating foods that are good sources of lactate. Sour cream and yogurt contain lots of lactate, and milk products in general contain the precursor lactose, which gut bacteria will convert to lactate, assuming you don't have lactose intolerance. Strenuous physical exercise, such as a tread machine workout, will help to get rid of any excess fructose and glucose in the blood, with the skeletal muscles converting them to the much coveted lactate.

Finally, I have a set of perhaps surprising recommendations that are based on research I have done leading to the two papers that are currently under review (Seneff3 et al, Seneff4 et al.). My research has uncovered compelling evidence that the nutrient that is most crucially needed to protect the heart from atherosclerosis is cholesterol sulfate. The extensive literature review my colleagues and I have conducted to produce these two papers shows compellingly that the fatty deposits that build-up in the artery walls leading to the heart exist mainly for the purpose of extracting cholesterol from glycated small dense LDL particles and synthesizing cholesterol sulfate from it, providing the cholesterol sulfate directly to the heart muscle. The reason the plaque build-up occurs preferentially in the arteries leading to the heart is so that the heart muscle can be assured an adequate supply of cholesterol sulfate. In our papers, we develop the argument that the cholesterol sulfate plays an essential role in the caveolae in the lipid rafts, in mediating oxygen and glucose transport.

The skin produces cholesterol sulfate in large quantities when it is exposed to sunlight. Our theory suggests that the skin actually synthesizes sulfate from sulfide, capturing energy from sunlight in the form of the sulfate molecule, thus acting as a solar-powered battery. The sulfate is then shipped to all the cells of the body, carried on the back of the cholesterol molecule.

Evidence of the benefits of sun exposure to the heart is compelling, as evidenced by a study conducted to investigate the relationship between geography and cardiovascular disease (Grimes et al., 1996). Through population statistics, the study showed a consistent and striking inverse linear relationship between cardiovascular deaths and estimated sunlight exposure, taking into account percentage of sunny days as well as latitude and altitude effects. For instance, the cardiovascular-related death rate for men between the ages of 55 and 64 was 761 in Belfast, Ireland but only 175 in Toulouse, France.

Cholesterol sulfate is very versatile. It is water soluble so it can travel freely in the blood stream, and it enters cell membranes ten times as readily as cholesterol, so it can easily resupply cholesterol to cells. The skeletal and heart muscle cells make good use of the sulfate as well, converting it back to sulfide, and synthesizing ATP in the process, thus recovering the energy from sunlight. This decreases the burden on the mitochondria to produce energy. The oxygen released from the sulfate molecule is a safe source of oxygen for the citric oxide cycle in the mitochondria.

So, in my view, the best way to avoid heart disease is to assure an abundance of an alternative supply of cholesterol sulfate. First of all, this means eating foods that are rich in both cholesterol and sulfur. Eggs are an optimal food, as they are well supplied with both of these nutrients. But secondly, this means making sure you get plenty of sun exposure to the skin. This idea flies in the face of the advice from medical experts in the United States to avoid the sun for fear of skin cancer. I believe that the excessive use of sunscreen has contributed significantly, along with excess fructose consumption, to the current epidemic in heart disease. And the natural tan that develops upon sun exposure offers far better protection from skin cancer than the chemicals in sunscreens.

Comments

Popular Posts